The copyright for the images on the title page belongs to ESA / A. Gerst, M. Hort, C. Hübscher, D. Becker, WIT-Consortium, respectively.
Contents

Introduction
- Overview ... 1
- Lecturers ... 2
- Examination board .. 5
- Study advice .. 5
- Academic Services Office ... 5

Modules
- Advanced studies and specialisation in geophysics 6
- Seminar .. 7
- Interdisciplinary studies .. 8
- Elective studies .. 9
- Orientation project ... 10
- Preparatory project .. 11
- Master's thesis .. 12

Courses
- Ambient seismic noise ... 13
- Applied volcanology ... 14
- Body and surface wave seismology 15
- Borehole geophysics 1: Tools and applications 16
- Borehole geophysics 2: Special applications and evaluation methods .. 17
- Digital signal processing .. 18
- Earthquakes .. 19
- Fracture processes and Earthquake sources 20
- Inversion problems ... 21
- Machine learning in geophysics 22
- Migration of seismic reflection data 23
- Potential theory .. 24
- Seismic anisotropy ... 25
- Volcanology .. 26
Introduction

The M.Sc. Geophysics is a research-oriented programme that offers individual specialisation. Students can choose those lectures from the curriculum of the Institute of Geophysics that best suit their scientific interests. The programme is divided into two phases, beginning with the Advanced Studies Phase, where students develop advanced knowledge and understanding in geophysics and related interdisciplinary subjects. This phase is followed by the Research Phase, where students specialise in a geophysical research field that eventually becomes the topic of their Master’s thesis.

Overview

<table>
<thead>
<tr>
<th>Advanced Studies Phase</th>
<th>Research Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semester 1</td>
<td></td>
</tr>
<tr>
<td>Advanced Studies and Specialisation in Geophysics</td>
<td>Orientation Project</td>
</tr>
<tr>
<td>min. 30 ECTS</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>Seminar</td>
<td>Preparatory Project</td>
</tr>
<tr>
<td>min. 6 ECTS</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>Interdisciplinary Studies</td>
<td></td>
</tr>
<tr>
<td>max. 15 ECTS</td>
<td></td>
</tr>
<tr>
<td>Elective Studies</td>
<td>Master’s Thesis</td>
</tr>
<tr>
<td>max. 6 ECTS</td>
<td>30 ECTS</td>
</tr>
</tbody>
</table>

The curriculum of the Institute of Geophysics represents the focus of the working groups in research and teaching:

- Applied Seismics
- Marine Geophysics
- Seismology
- Physical Volcanology
- Machine Learning
- Interdisciplinary expertise
- Learning by active participation in research
Lecturers

• Dr. Christian Bücker

Fields of work:
– Borehole measurements and a statistically validated objectified assessment of the underlying rock and fluid physical parameters

Modules:
– Borehole geophysics 1: Tools and applications
– Borehole geophysics 2: Special applications and evaluation methods

Contact: christian.buecker@uni-hamburg.de

• Prof. Dr. Céline Hadziioannou (staff lecturer)

Fields of work:
– Seismology
– Studying seismic background noise
– Rotational seismology
– Scattered wavefields

Modules:
– Body and surface wave seismology
– Ambient seismic noise
– Earthquakes
– Fracture processes and Earthquake sources
– Orientation project
– Preparatory project
– Master’s thesis

Contact: celine.hadziioannou@uni-hamburg.de

• Prof. Dr. Conny Hammer (staff lecturer)

Fields of work:
– Machine learning in geophysics
– Seismic event detection
– Natural hazards

Modules:
– Machine learning in geophysics
– Machine learning: generative models in geophysics
– Orientation project
– Preparatory project
– Master’s thesis

Contact: conny.hammer@uni-hamburg.de
• Prof. Dr. Matthias Hort (staff lecturer)

Fields of work:
– Geophysical volcanology
– Dynamics of the interior of the earth
– Volcanoes and climate

Modules:
– Potential theory
– Volcanology
– Seminar on volcanology
– Orientation project
– Preparatory project
– Master’s thesis

Contact: matthias.hort@uni-hamburg.de

• Prof. Dr. Christian Hübscher (staff lecturer)

Fields of work: seismic interpretation with focus on
– Salt tectonics
– Slope slumping
– Sequence stratigraphy
– Fluid and gas escape
– Mud volcanoes
– Paleooceanography

Modules:
– Seismic data processing
– Seminar on applied geophysics
– Orientation project
– Preparatory project
– Master’s thesis

Contact: christian.huebscher@uni-hamburg.de

• Dr. Lea Scharff (staff lecturer)

Fields of work:
– Geophysical volcanology

Modules:
– Applied volcanology
– Inversion problems
– Seminar on volcanology
– Orientation project
– Preparatory project
– Master’s thesis

Contact: lea.scharff@uni-hamburg.de
• Dr. Sven Schippkus (staff lecturer)

Fields of work:
– The ambient seismic field and its applications

Modules:
– Body and surface wave seismology
– Ambient seismic noise
– Seminar on seismology
– Orientation project
– Preparatory project
– Master’s thesis

Contact: sven.schippkus@uni-hamburg.de

• PD Dr. Claudia Vanelle (staff lecturer)

Fields of work:
– Elastic wave propagation
– Seismic anisotropy
– Subsurface imaging with seismic data
– Multiparameter methods

Modules:
– Seismic anisotropy
– Digital signal processing
– Migration of seismic reflection data
– Seminar on applied geophysics
– Orientation project
– Preparatory project
– Master’s thesis

Contact: claudia.vanelle@uni-hamburg.de
Examination board

The current (March 2024) members of the examination board for the M.Sc. Geophysics are:

<table>
<thead>
<tr>
<th>Role</th>
<th>Primary representative</th>
<th>Deputy representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professor</td>
<td>Prof. Dr. Matthias Hort (head)</td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td>Prof. Dr. Céline Hadziioannou</td>
<td></td>
</tr>
<tr>
<td>Professor</td>
<td>Prof. Dr. Conny Hammer</td>
<td></td>
</tr>
<tr>
<td>Research assistant</td>
<td>PD Dr. Claudia Vanelle</td>
<td>Dr. Lea Scharff</td>
</tr>
<tr>
<td>Student representative</td>
<td>Maryse Schmidt, Benedikt Haimerl</td>
<td></td>
</tr>
</tbody>
</table>

Study advice

The study advisor for the M.Sc. Geophysics is PD Dr. Claudia Vanelle.

Contact: claudia.vanelle@uni-hamburg.de

Academic Services Office

The Academic Services Office is the central contact point for questions and queries of students and lecturers at the Department of Earth System Sciences. Their tasks include the coordination of degree programs, subject counselling, and exam management.

Contact: studienbuero.geo@uni-hamburg.de
<table>
<thead>
<tr>
<th>Module code</th>
<th>GP-M-AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Advanced studies and specialisation in geophysics</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>The teaching staff of the Institute of Geophysics</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students are familiar with the state of the art in research as well as an advanced understanding of selected problems, methods, and results in fields of geophysical research. They are competent in applying advanced scientific methods and techniques in these fields. They are capable of performing self-directed scientific work in the fields and have gained knowledge and experience with scientific literature.</td>
</tr>
</tbody>
</table>
| Contents | Individual contents can be chosen from the following list of compulsory elective courses:
| | • Ambient seismic noise
| | • Applied volcanology
| | • Body and surface wave seismology
| | • Borehole geophysics 1: Tools and applications
| | • Borehole geophysics 2: Special applications and evaluation methods
| | • Digital signal processing
| | • Earthquakes
| | • Fracture processes and Earthquake sources
| | • Inversion problems
| | • Machine learning in geophysics
| | • Migration of seismic reflection data
| | • Potential theory
| | • Seismic anisotropy
| | • Volcanology |
| Language | English |
| Teaching methods | Lectures, exercises, and any other method according to §5 MIN PO. |
| Prerequisites for participation | See the respective courses. |
| Target audience | For students in the M.Sc. Geophysics: compulsory module.
| | For students in M.Sc. programmes in physical and earth sciences: elective module. |
| Recommended semester | 1 and 2 |
| Requirements for exam registration | Details will be announced at the beginning of the respective course. |
| Type of exam | Written exam. completion of exercises, homework assignment. |
| Grading scale | Five point (1-5) or pass/fail. Details are given in the description of the respective course. |
| Workload | A minimum of 30 ECTS with five point (1-5) grading system must be achieved, while a maximum of 54 ECTS is possible.
| | • Lectures: 1 ECTS for 1 hr./week of directed study time
| | • Exercises: 2 ECTS for 1 hr./week of directed study time |
| Frequency | Every term |
| Duration | 2 semesters |
| Literature | See the respective courses. |

Note: For technical reasons, the individual courses that are listed in the section below are implemented in the STiNE system as modules. Their description in this handbook is, therefore, also provided in terms of modules.
<table>
<thead>
<tr>
<th>Module code</th>
<th>GP-M-SEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Seminar</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>The teaching staff of the Institute of Geophysics</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students can familiarise themselves with an advanced geophysical topic. They can present their results in an oral lecture and lead a scientific discussion.</td>
</tr>
</tbody>
</table>
| **Contents** | - ASEM: Seminar on Applied Geophysics
- MSEM: Seminar on Machine Learning
- SSEM: Seminar on Seismology
- VSEM: Seminar on Volcanology |
<p>| Language | English |
| Teaching methods | Seminar |
| Prerequisites for participation | None |
| Target audience | For students in the M.Sc. Geophysics: compulsory module. For students in M.Sc. programmes in physical and earth sciences: elective module. |
| Recommended semester | 1 or 2 |
| Requirements for exam registration | Regular attendance. Details will be announced at the beginning of the respective course. |
| Type of exam | Presentation and report. |
| Grading scale | Pass/fail. |
| Workload |

| Seminar per course | Directed study time per course | Self study per course | Exam preparation per course |
| Credit points: 3 ECTS | 30 hrs. | 30 hrs. | 30 hrs. |
| Frequency | Every term |
| Duration | 2 semesters |
| Literature | Will be announced at the beginning of the course. |</p>
<table>
<thead>
<tr>
<th>Module code</th>
<th>GP-M-IS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Interdisciplinary studies</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Module type</td>
<td>Elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students have complemented their expertise in geophysics with knowledge of their chosen interdisciplinary subject.</td>
</tr>
<tr>
<td>Contents</td>
<td>Course(s) from M.Sc. modules offered by the departments of Geosciences (including ICSS), Mathematics, Physics, Informatics of the University of Hamburg. Exceptions are possible, but must be cleared beforehand with the study coordinator. Please contact the study advisor for details.</td>
</tr>
<tr>
<td>Language</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Teaching methods</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Prerequisites for participation</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Target audience</td>
<td>For students in the M.Sc. Geophysics: elective module.</td>
</tr>
<tr>
<td>Recommended semester</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Requirements for exam registration</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Type of exam</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Grading scale</td>
<td>According to the specified course(s). The grade does not contribute to the final grade of the M.Sc. Geophysics.</td>
</tr>
<tr>
<td>Workload</td>
<td>While there is no minimum requirement, a maximum of 15 ECTS will be accepted. The workload follows according to the specified course(s).</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every term</td>
</tr>
<tr>
<td>Duration</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Literature</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Module code</td>
<td>GP-M-ES</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Module name</td>
<td>Elective studies</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Module type</td>
<td>Elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students have gained fundamental knowledge of their chosen subject.</td>
</tr>
<tr>
<td>Contents</td>
<td>Course(s) from M.Sc. modules offered by the University of Hamburg with the exception of language courses in English, French, Spanish, German if the CEFR level is below C1. Exceptions are possible, but must be cleared beforehand with the study coordinator. Please contact a study advisor for details.</td>
</tr>
<tr>
<td>Language</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Teaching methods</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Prerequisites for participation</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Target audience</td>
<td>For students in the M.Sc. Geophysics: elective module.</td>
</tr>
<tr>
<td>Recommended semester</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Requirements for exam registration</td>
<td>According to the specified course(s)</td>
</tr>
<tr>
<td>Type of exam</td>
<td>According to the specified course(s)</td>
</tr>
</tbody>
</table>
| Grading scale | According to the specified course(s)
The grade does not contribute to the final grade of the M.Sc. Geophysics. |
<p>| Workload | While there is no minimum requirement, a maximum of 6 ECTS will be accepted. The workload follows according to the specified course(s). |
| Frequency | Every term |
| Duration | According to the specified course(s) |
| Literature | According to the specified course(s) |</p>
<table>
<thead>
<tr>
<th>Module code</th>
<th>GP-M-OP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Orientation project</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>The teaching staff of the Institute of Geophysics</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students are familiar with the current state of the art in a modern research topic, from which the master’s thesis should originate. They have learned to independently acquire requisite information and background knowledge and to familiarise themselves with a special subject.</td>
</tr>
<tr>
<td>Contents</td>
<td>Will be announced at the beginning of the course.</td>
</tr>
<tr>
<td>Language</td>
<td>German or English. The actual language will be announced at the beginning of the course.</td>
</tr>
<tr>
<td>Teaching methods</td>
<td>Any method according to §5 MIN PO.</td>
</tr>
<tr>
<td>Prerequisites for participation</td>
<td>None.</td>
</tr>
<tr>
<td>Target audience</td>
<td>For students in the M.Sc. Geophysics: compulsory module.</td>
</tr>
<tr>
<td>Recommended semester</td>
<td>3</td>
</tr>
<tr>
<td>Requirements for exam registration</td>
<td>Details will be announced at the beginning of the course.</td>
</tr>
<tr>
<td>Type of exam</td>
<td>Oral presentation or written project report. Details will be announced at the beginning of the respective course.</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Pass/fail.</td>
</tr>
<tr>
<td>Workload</td>
<td>15 ECTS</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Literature</td>
<td>Will be announced at the beginning of the course.</td>
</tr>
<tr>
<td>Module code</td>
<td>GP-M-PP</td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Module name</td>
<td>Preparatory project</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>The teaching staff of the Institute of Geophysics</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory</td>
</tr>
</tbody>
</table>

Objectives / learning outcomes

After successful completion of the module, students have gained knowledge and developed special methods of the chosen research field to the extent that they can successfully apply them to work on the topic, from which the master’s thesis should originate. They can plan and structure the planned research project.

Contents

Will be announced at the beginning of the course.

Language

German or English. The actual language will be announced at the beginning of the course.

Teaching methods

Any method according to §5 MIN PO.

Prerequisites for participation

Successful completion of Orientation project (OP).

Target audience

For students in the M.Sc. Geophysics: compulsory module.

Recommended semester

3

Requirements for exam registration

Details will be announced at the beginning of the course.

Type of exam

Oral presentation or written project report. Details will be announced at the beginning of the respective course.

Grading scale

Pass/fail.

Workload

15 ECTS

Frequency

Every term

Duration

1 semester

Literature

Will be announced at the beginning of the course.
<table>
<thead>
<tr>
<th>Module code</th>
<th>GP-M-MT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Master’s thesis</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>The teaching staff of the Institute of Geophysics</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students are able to familiarise themselves with a topic of current geophysical research within a given time frame. They have gained the ability to apply suitable scientific methods independently and to present the results in a scientifically appropriate form.</td>
</tr>
<tr>
<td>Contents</td>
<td>Will be announced at the beginning of the course.</td>
</tr>
<tr>
<td>Language</td>
<td>English or German. The actual language will be announced at the beginning of the course.</td>
</tr>
<tr>
<td>Teaching methods</td>
<td>Final module.</td>
</tr>
<tr>
<td>Prerequisites for participation</td>
<td>Successful completion of Advanced studies and specialisation in geophysics (AS).</td>
</tr>
<tr>
<td>Target audience</td>
<td>For students in the M.Sc. Geophysics: compulsory module.</td>
</tr>
<tr>
<td>Recommended semester</td>
<td>4</td>
</tr>
<tr>
<td>Requirements for exam registration</td>
<td>Details will be announced at the beginning of the respective course.</td>
</tr>
<tr>
<td>Type of exam</td>
<td>Written thesis and oral lecture with the content of the written thesis to be presented in a scientific seminar. The lecture should be given shortly after the submission of the written work.</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Five point (1-5). The grade of the written thesis contributes 80% to the final grade and the grade of the oral presentation contributes 20% to the final grade.</td>
</tr>
<tr>
<td>Workload</td>
<td>30 ECTS</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every term</td>
</tr>
<tr>
<td>Duration</td>
<td>Six months</td>
</tr>
<tr>
<td>Literature</td>
<td>Will be announced at the beginning of the course.</td>
</tr>
</tbody>
</table>
Module code
SEISNOISE

Module name
Ambient seismic noise

Lecturer(s)
C. Hadziioannou, S. Schippkus

Module type
Compulsory elective

Objectives / learning outcomes
After completing the module, students will be able to locate sources of ambient seismic noise and compute Green’s functions between station pairs. Students will be very familiar with the most important sources of ambient seismic noise and their mechanisms. Students will have broad knowledge about common applications of ambient noise in modern seismology (tomography, structural monitoring), and will have basic knowledge of more exotic applications (amplitudes, other celestial bodies).

Contents
- Sources of ambient seismic noise: global, regional, local; Source mechanisms
- Methods for source identification and localization: Beamforming and Matched Field Processing
- Interferometry of seismic noise for retrieval of estimated Green’s functions
- Applications of estimated Green’s functions: Tomography, amplitudes
- Monitoring approaches, coda sensitivity, environmental monitoring
- Seismic noise on Moon and Mars

Language
English.

Teaching methods
Lectures (15 hrs.) and computer exercises (30 hrs.), taught as block course.

Prerequisites for participation
Programming skills (Python, Obspy) and knowledge in Seismology at the level of the B.Sc. module VGSEIS

Target audience
For students in M.Sc. programmes in physical and earth sciences: elective module.

Recommended semester
1 or 2

Requirements for exam registration
Regular attendance and completion of exercises. Details will be announced at the beginning of the course.

Type of exam
Homework assignment.

Grading scale
Five point (1-5)

Workload
<table>
<thead>
<tr>
<th>Lectures and exercises</th>
<th>Directed study time</th>
<th>Self study</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points: 5</td>
<td>45 hrs.</td>
<td>45 hrs.</td>
<td>60 hrs.</td>
</tr>
</tbody>
</table>

Frequency
Every other summer term.

Duration
1 semester

Literature
Will be announced at the beginning of the course.
<table>
<thead>
<tr>
<th>Module code</th>
<th>APPVOLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Applied volcanology</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>L. Scharff</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
</tbody>
</table>

| **Objectives / learning outcomes** | Upon successful completion, the students are familiar with the most abundant measurement devices used at volcanoes worldwide. They have identified the physical parameters, relevant to volcanological research and know how to retrieve them. They gained overview on the measurement principles and function of devices and their installation in the field. In addition, an introduction to general periphery (electronic and IT), power supply, data storage and transmission, as well as accurate timing of instruments will enable students to plan their own campaigns. |

| **Contents** | • Volcano seismology
• Infrasound
• Deformation
• Radar
• Gas and temperature measurement
• Remote sensing
• Data storage and transmission
• Isolated power supply |

| **Language** | English |
| **Teaching methods** | Lectures (2 hrs./week) and exercises (1 hr./week) |

| **Prerequisites for participation** | Required: physics basics (radiation and absorption, electronics)
Recommended: basic programming skills, lecture inverse problems |

| **Target audience** | For students in the M.Sc. Geophysics: core module in Advanced Studies and Specialisation in Geophysics (AS).
For students in M.Sc. programmes in physical and earth sciences: elective module. |

| **Recommended semester** | 1 or 2 |

| **Requirements for exam registration** | Regular attendance. Details will be announced at the beginning of the course. |

| **Type of exam** | Homework assignment. |
| **Grading scale** | Five point (1-5) |

<table>
<thead>
<tr>
<th>Workload</th>
<th>Lectures and exercises</th>
<th>Directed study time</th>
<th>Self study</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points: 4</td>
<td>45 hrs.</td>
<td>45 hrs.</td>
<td>30 hrs.</td>
<td></td>
</tr>
</tbody>
</table>

| **Frequency** | Every summer term, depending on the availability of the lecturer. |
| **Duration** | 1 semester |

| **Literature** | Will be announced at the beginning of the course. |

Module handbook for the M.Sc. Geophysics at the University of Hamburg 14
<table>
<thead>
<tr>
<th>Module code</th>
<th>SEI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Body and surface wave seismology</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. Hadziioannou, S. Schippkus</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After completing the module, the students should understand the fundamental concepts of seismic wave propagation and put these concepts into practice. They will be familiar with the theory, analysis and application of surface waves. Through computer exercises, they will have some practical experience in the application of several seismological methods.</td>
</tr>
</tbody>
</table>
| Contents | • Basic theorems in dynamic elasticity
• Wave potentials
• Wave excitation from a point source
• Representation of the seismic source
• Surface waves; surface wave modes
• Dispersion
• Surface wave tomography
• Earth’s normal modes |
| Language | English. |
| Teaching methods | Lectures (2 hrs.) and exercises (2 hrs.) |
| Prerequisites for participation | Recommended: basic programming skills; VGSEI or equivalent introductory seismology course |
| Target audience | For students in the M.Sc. Geophysics: core module in Advanced Studies and Specialisation in Geophysics (AS).
For students in M.Sc. programmes in physical and earth sciences: elective module. |
| Recommended semester | 1 or 2 |
| Requirements for exam registration | Completion of exercises. Details will be announced at the beginning of the course. |
| Type of exam | Written exam. |
| Grading scale | Five point (1-5) |
| Workload | Lectures and exercises 60 hrs.
Directed study time 90 hrs.
Self study 30 hrs.
Exam preparation |
| Credit points | 6 |
| Frequency | Every winter term |
| Duration | 1 semester |
| Literature | Most material will be provided, but the following references contain helpful background information:
• Aki, K., & Richards, P. G. (2002). Quantitative seismology.
<table>
<thead>
<tr>
<th>Module code</th>
<th>BLG-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Borehole geophysics 1: Tools and applications</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. Bücke</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, the students are able to recognise simple lithologies and hydrocarbon contents on the basis of borehole measurements.</td>
</tr>
</tbody>
</table>
| Contents | • Drilling and coring
• Depth and depth measurement
• Caliper and quality control
• Gamma ray
• Electrical resistivity
• Rock density
• Seismic velocities
• Case studies
• Logs and hydrocarbons |
| Language | German or English. The actual language will be announced at the beginning of the course. |
| Teaching methods | Lectures (2 hrs.) |
| Prerequisites for participation | Recommended: basic knowledge in geology and physics |
| Recommended semester | 1 or 2 |
| Requirements for exam registration | Regular attendance. Details will be announced at the beginning of the course. |
| Type of exam | Written exam. |
| Grading scale | pass/fail |
| Workload | Lectures and exercises
Credit points: 3
Directed study time: 30 hrs.
Self study: 30 hrs.
Exam preparation: 30 hrs. |
<p>| Frequency | Every summer term, depending on the availability of the lecturer. |
| Duration | 1 semester |
| Literature | Will be announced at the beginning of the lecture. |</p>
<table>
<thead>
<tr>
<th>Module code</th>
<th>BLG-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Borehole geophysics 2: Special applications and evaluation methods</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. B"ucker</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After completing the module, the students have gained an overview of 'advanced' borehole sensors. They have learned to evaluate borehole field measurements regarding fluid detection as applied by the carbohydrate industry as well as geothermic applications. They are able to recognise simple lithologies and calculate fluid contents.</td>
</tr>
</tbody>
</table>
| **Contents** | • Borehole Imaging (SHDT, FMS, FMI, ...)
• Vertical Seismic Profiling (VSP)
• Nuclear Magnetic Resonance (NMR)
• Temperature Measurements (DTS)
• Borehole Gravity, Magnetic Susceptibility
• Formation Testing and Sampling (RFT, MDT)
• Evaluation Methods, Software |
| **Language** | English or German. The actual language will be announced at the beginning of the course. |
| **Teaching methods** | Lectures (2 hrs.) |
| **Prerequisites for participation** | Recommended: basic knowledge in geology, physics, and mathematics |
| **Target audience** | For students in the M.Sc. Geophysics: core module in Advanced Studies and Specialisation in Geophysics (AS).
For students in M.Sc. programmes in physical and earth sciences: elective module. |
| **Recommended semester** | 1 or 2 |
| **Requirements for exam registration** | Regular attendance. Details will be announced at the beginning of the course. |
| **Type of exam** | Written exam. |
| **Grading scale** | pass/fail |
| **Workload** | Lectures and exercises: Credit points: 3
Directed study time: 30 hrs.
Self study: 30 hrs.
Exam preparation: 30 hrs. |
<p>| Frequency | Every winter term, depending on the availability of the lecturer. |
| Duration | 1 semester |
| Literature | Will be announced at the beginning of the lecture. |</p>
<table>
<thead>
<tr>
<th>Module code</th>
<th>DIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Digital signal processing</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. Vanelle</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After completing the module, students have gained a solid background in the fundamental methods of signal processing and the analysis of data in different domains.</td>
</tr>
<tr>
<td>Contents</td>
<td>• Geophysical time series</td>
</tr>
<tr>
<td></td>
<td>• Analog-to-digital conversion</td>
</tr>
<tr>
<td></td>
<td>• Representation of numbers</td>
</tr>
<tr>
<td></td>
<td>• Fourier series and Fourier transform</td>
</tr>
<tr>
<td></td>
<td>• Laplace Transform</td>
</tr>
<tr>
<td></td>
<td>• Sampling theorem</td>
</tr>
<tr>
<td></td>
<td>• Uncertainty relations</td>
</tr>
<tr>
<td></td>
<td>• Convolution</td>
</tr>
<tr>
<td></td>
<td>• Causality</td>
</tr>
<tr>
<td></td>
<td>• Linear filters</td>
</tr>
<tr>
<td></td>
<td>• Window functions and tapering</td>
</tr>
<tr>
<td></td>
<td>• Z-transform</td>
</tr>
<tr>
<td></td>
<td>• Hilbert transform</td>
</tr>
<tr>
<td></td>
<td>• τ-p transform</td>
</tr>
<tr>
<td></td>
<td>• Phase properties of wavelets</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Teaching methods</td>
<td>Lectures (2 hrs.) and exercises (2 hrs.)</td>
</tr>
<tr>
<td>Prerequisites for participation</td>
<td>Required: programming</td>
</tr>
<tr>
<td></td>
<td>Recommended: elastic wave propagation (VGSW or equivalent) and applied seismics (VGAN-S or equivalent)</td>
</tr>
<tr>
<td>Recommended semester</td>
<td>1 or 2</td>
</tr>
<tr>
<td>Requirements for exam registration</td>
<td>Completion of exercises. Details will be announced at the beginning of the course.</td>
</tr>
<tr>
<td>Type of exam</td>
<td>Completion of exercises.</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Five point (1-5)</td>
</tr>
<tr>
<td>Workload</td>
<td>Lectures and exercises</td>
</tr>
<tr>
<td></td>
<td>Directed study time</td>
</tr>
<tr>
<td></td>
<td>Self study</td>
</tr>
<tr>
<td></td>
<td>Exam preparation</td>
</tr>
<tr>
<td>Frequency</td>
<td>Every second summer term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 semester</td>
</tr>
<tr>
<td>Module code</td>
<td>EARTHQUAKES</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Module name</td>
<td>Earthquakes</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. Hadziioannou, S. Donner</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After completing the module, students will be able to describe the earthquake source mechanism. Students will be familiar with the processes driving earthquakes. Students will have explored different aspects of current research on earthquake source processes.</td>
</tr>
</tbody>
</table>
| **Contents** | • Focal parameters and source mechanism of earthquakes
• Models of fracture, nucleation, propagation and arrest of a rupture
• Methods of determination of source mechanisms
• Different types of earthquakes: tectonic, volcanic, induced
• Seismicity, seismotectonics and seismic risk
• Current research in earthquake characterization and simulation
The exact contents of the course will be adapted to the interest of the participating students. |
| **Language** | English. |
| **Teaching methods** | Lectures and discussion (30 hrs), taught as a seminar with strong student participation. |
| **Prerequisites for participation** | Knowledge of seismic wave propagation at the level of the B.Sc. module VGSW. Knowledge in Seismology at the level of the B.Sc. module VGSEIS is not required, but it is an advantage. |
| **Target audience** | For students in the M.Sc. Geophysics: core module in Advanced Studies and Specialisation in Geophysics (AS).
For students in M.Sc. programmes in physical and earth sciences: elective module. |
| **Recommended semester** | 1 or 2 |
| **Requirements for exam registration** | Regular attendance and participation in the discussion. Details will be announced at the beginning of the course. |
| **Type of exam** | Presentation. |
| **Grading scale** | Pass/Fail |
| **Workload** | Lectures and exercises: 30 hrs.
Directed study time: 30 hrs.
Self study: 30 hrs.
Exam preparation: 30 hrs.
Credit points: 3 |
| **Frequency** | Every second winter term |
| **Duration** | 1 semester |
| **Literature** | Will be announced at the beginning of the course. |
Courses Fracture processes and Earthquake sources

<table>
<thead>
<tr>
<th>Module code</th>
<th>FRACTURES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Fracture processes and Earthquake sources</td>
</tr>
<tr>
<td>Module coordinator</td>
<td>S. Donner, C. Hadziioannou</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
</tbody>
</table>

Objectives / learning outcomes

After successfully completing the module, students are able to locate an Earthquake, determine its focal mechanism, and relate this to the moment tensor. They have an understanding of the physical processes occurring during earthquake rupture. This includes a base understanding of processes that happen on the micro scale when materials break, and how this relates to phenomena at larger scales. Students are able to place the understanding gained in this course within the framework of open questions and challenges in seismology. They are able to answer the question “why can earthquakes not be predicted?”

Contents

- Earthquake sources: localization, focal solution, moment tensor
- Earthquake rupture processes: how does a rupture start (and stop)?
- Micro-scale fracture processes and non-linear elasticity

Language

English.

Teaching methods

Lectures (2 hrs./week) and computer exercises and presentations by the students (2 hrs./week)

Prerequisites for participation

Recommended: Knowledge in seismology at the level of the modules VGSEI and/or VGSW. Required: Programming in Python (and ideally Obspy). Students who do not have this skill have to complete a Python & Obspy introductory exercise before the start of the semester.

Target audience

Recommended semester

1 or 2

Requirements for exam registration

Regular attendance and completion of exercises. Details will be announced at the beginning of the course.

Type of exam

Presentation

Grading scale

Five point (1-5)

Workload

<table>
<thead>
<tr>
<th>Lectures and exercises</th>
<th>Directed study time</th>
<th>Self study</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credit points: 6</td>
<td>60 hrs.</td>
<td>90 hrs.</td>
<td>30 hrs.</td>
</tr>
</tbody>
</table>

Frequency

Every summer term

Duration

1 semester

Literature

Will be announced at the start of the course
<table>
<thead>
<tr>
<th>Module code</th>
<th>INV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Inversion problems</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>L. Scharff</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After completing the module, students are familiar with concepts, theory and limitations of linear and non-linear inversion methods and algorithms. They have inverted diverse data sets using self-written programs and gained experience in the application of established inversion methods. They are capable of solving inverse problems efficiently on their own. They are familiar with confidence intervals and the concept of errors and recognize instabilities and non-unique solutions.</td>
</tr>
</tbody>
</table>
| Contents | Linear inverse problems:
- Least squares method, incl. weighting
- Errors and norms
- Under- and overdetermined problems
- Damping
- Generalized inverse
- (In-)equality constraints
- Interpolation and model fitting
- Hypothesis testing
Non-linear inverse problems:
- Gradient methods, incl. conjugate gradients
- Grid search
- Monte Carlo methods
- Simulated Annealing
- Evolutionary Algorithms |
| Language | English |
| Teaching methods | Lectures (2 hrs.) and exercises (2 hrs.) |
| Prerequisites for participation | Recommended: basic programming skills |
| Recommended semester | 1 or 2 |
| Requirements for exam registration | Completion of exercises. Details will be announced at the beginning of the course. |
| Type of exam | Completion of exercises. |
| Grading scale | Five point (1-5) |
| Workload | Lectures and exercises
- Credit points: 6
- 60 hrs.
Directed study time
- Self study
- 75 hrs.
Exam preparation
- 45 hrs. |
| Frequency | Every winter term |
| Duration | 1 semester |
| Literature |
- Menke (2012): Geophysical Data Analysis: Discrete Inverse Theory |
<table>
<thead>
<tr>
<th>Module code</th>
<th>MLG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Machine learning in geophysics</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. Hammer</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students will have an overview of machine learning, including theory and specific applications in Geophysics. They have applied various machine learning techniques to geophysical problems using self-written programs but also get to know several open source machine learning frameworks. They learned how to evaluate the performance of their implemented algorithms.</td>
</tr>
</tbody>
</table>
| **Contents** | • Machine learning
• Objects and features
• Supervised and unsupervised methods
• Deep learning
• Applications in geophysics |
| **Language** | English |
| **Teaching methods** | Lectures (2 hrs./week) and exercises (2 hrs./week). |
| **Prerequisites for participation** | Recommended: basic programming skills |
| **Target audience** | For students in the M.Sc. Geophysics: core module in Advanced Studies and Specialisation in Geophysics (AS).
For students in M.Sc. programmes in physical and earth sciences: elective module. |
| **Recommended semester** | 1 or 2 |
| **Requirements for exam registration** | Completion of exercises. Details will be announced at the beginning of the course. |
| **Type of exam** | Homework assignment. |
| **Grading scale** | Five point (1-5) |
| **Workload** | Lectures and exercises
Credit points: 6
60 hrs.
Self study
30 hrs.
Exam preparation
90 hrs. |
<p>| Frequency | Every winter term. |
| Duration | 1 semester |
| Literature | Will be announced at the beginning of the course |</p>
<table>
<thead>
<tr>
<th>Module code</th>
<th>MiG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Migration of seismic reflection data</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. Vanelle</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students are familiar with the foundations of subsurface imaging by depth conversion of poststack and prestack reflection seismic data.</td>
</tr>
</tbody>
</table>
| Contents | • Wavefields
• Modelling
• Time migration
• Geometric migration
• Summation migration
• Imaging condition
• Kirchhoff migration
• Frequency-wavenumber migration
• Migration with finite differences
• Full-waveform migration
• Migration velocity analysis |
| Language | English |
| Teaching methods | Lectures (2 hrs./week) and exercises (2 hrs./week, partially as block course) |
| Prerequisites for participation | Required: programming, elastic wave propagation (VGSW or equivalent) and applied seismics (VGAN-S or equivalent) |
| Recommended semester | 1 or 2 |
| Requirements for exam registration | Completion of exercises. Details will be announced at the beginning of the course. |
| Type of exam | Written exam. |
| Grading scale | Five point (1-5) |
| Workload | Lectures and exercises 60 hrs.
Directed study time 90 hrs.
Self study 30 hrs. |
| Frequency | Every winter term |
| Duration | 1 semester |
• Claerbout, J.F., 1985, Imaging the Earth’s Interior: Blackwell.
<table>
<thead>
<tr>
<th>Module code</th>
<th>POTTHEO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Potential theory</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>M. Hort</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After completing the module, students have a firm understanding of the basics of potential theory. They are able to answer fundamental questions in potential theory. They will have written a code by themselves to numerically calculate gravity anomalies of arbitrarily shaped bodies.</td>
</tr>
</tbody>
</table>
| **Contents** | - Potentials
- Greens functions
- Newtonian potential
- Magnetic potential
- Spherical harmonics
- Laplace equation
- Gravity of the Earth |
| **Language** | English |
| **Teaching methods** | Lectures (2 hrs./week) and exercises (1 hr./week) |
| **Prerequisites for participation** | Recommended: Matlab, Python or Fortran |
| **Target audience** | For students in the M.Sc. Geophysics: core module in Advanced Studies and Specialisation in Geophysics (AS).
For students in M.Sc. programmes in physical and earth sciences: elective module. |
<p>| Recommended semester | 1 or 2 |
| Requirements for exam registration | Completion of exercises. Details will be announced at the beginning of the course. |
| Type of exam | Homework assignment. |
| Grading scale | Five point (1-5) |
| Workload |

| Lectures and exercises | Credit points: 4 |
| Directed study time | 45 hrs. |
| Self study | 45 hrs. |
| Exam preparation | 30 hrs. |
| Frequency | Every summer term, depending on the availability of the lecturer |
| Duration | 1 semester |</p>
<table>
<thead>
<tr>
<th>Module code</th>
<th>ANI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Seismic anisotropy</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>C. Vanelle</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
<tr>
<td>Objectives / learning outcomes</td>
<td>After successful completion of the module, students are familiar with the causes and effects of elastic anisotropy in the context of seismic wave propagation and imaging of the subsurface.</td>
</tr>
</tbody>
</table>
| Contents | Physical principles of wave propagation in anisotropic media:
| | • Causes of seismic anisotropy
| | • Symmetries
| | • Parameterisation
| | • Weak anisotropy
| | • Normal moveout
| | • Nonhyperbolic moveout
| | • Parameter estimation
| | • Shear waves |
| Language | English |
| Teaching methods | Lectures (2 hrs./week) and exercises (1 hr./week) |
| Prerequisites for participation | Required: programming, elastic wave propagation (VGSW or equivalent) and applied seismics (VGAN-S or equivalent) |
| Target audience | For students in the M.Sc. Geophysics: core module in Advanced Studies and Specialisation in Geophysics (AS).
| | For students in M.Sc. programmes in physical and earth sciences: elective module. | | | |
| Recommended semester | 1 or 2 |
| Requirements for exam registration | Completion of exercises. Details will be announced at the beginning of the course. |
| Type of exam | Written exam. |
| Grading scale | Five point (1-5) |
| Workload | Lectures and exercises | Directed study time | Self study | Exam preparation |
| | Credit points: 4 | 45 hrs. | 45 hrs. | 30 hrs. |
| Frequency | Every summer term |
| Duration | 1 semester |
| | Thomsen, L., 2002, Understanding Seismic Anisotropy in Exploration and Exploitation: SEG-DISC.
Volcanology

<table>
<thead>
<tr>
<th>Module code</th>
<th>VOLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module name</td>
<td>Volcanology</td>
</tr>
<tr>
<td>Lecturer(s)</td>
<td>M. Hort</td>
</tr>
<tr>
<td>Module type</td>
<td>Compulsory elective</td>
</tr>
</tbody>
</table>

Objectives / learning outcomes

After completing this course students will have acquired a basic understanding of the physics of volcanological processes. They will be able to address interdisciplinary volcanological questions and to model volcanological processes.

Contents

- Overview plate tectonics
- Volcano types
- Phase diagrams
- Crystallisation processes
- Lava lakes
- Rheology of magma
- Conduit flow
- Eruption dynamics

Language

English

Teaching methods

Lectures (2 hrs./week) and exercises (1 hr./week)

Prerequisites for participation

Recommended: Matlab, Python or Fortran

Target audience

For students in M.Sc. programmes in physical and earth sciences: elective module.

Recommended semester

1 or 2

Requirements for exam registration

Completion of exercises. Details will be announced at the beginning of the course.

Type of exam

Written exam.

Grading scale

Five point (1-5)

Workload

<table>
<thead>
<tr>
<th>Lectures and exercises</th>
<th>Directed study time</th>
<th>Self study</th>
<th>Exam preparation</th>
</tr>
</thead>
<tbody>
<tr>
<td>45 hrs.</td>
<td>45 hrs.</td>
<td>45 hrs.</td>
<td>30 hrs.</td>
</tr>
</tbody>
</table>

Frequency

Every winter term

Duration

1 semester

Literature